Multivariate Statistical Analysis Finds Cause of Quench Oil High-Viscosity Issue
One of the world's largest chemical, plastic and refining companies used Aspen ProMV to understand and resolve production problems caused by an ongoing quench oil high-viscosity issue. In this case study, learn how Aspen ProMV enabled the company to highlight the top process variables highly correlated with viscosity issues, and quickly guided process engineers to the underlying issue to limit losses.
European Refinery Tackles Heat Exchange Issues and Saves Millions in the Process
Learn how a European refinery saved $4 MM per year by implementing an automated fouling monitoring application utilizing Aspen HYSYS, Aspen EDR and MS Excel.
Fluor Achieves Significant Time Savings in SRU Simulation
Learn how Fluor created a digital twin of their entire sulfur recovery unit, including recycle streams, in a single file using Aspen HYSYS® with Sulsim. Read this case study to find out how AspenTech’s solution for SRU optimization allows users to increase production, reduce OPEX and meet emissions regulations by modeling the complexities of the SRU and the full gas plant.
셀프 옵티마이징 플랜트: 산업용 AI가 주도하는 자율 공장의 시대
오늘날의 VUCA (Volatility, Uncertainty, Complexity and Ambiguity), 즉 시장의 변동성과 불확실성, 복잡성, 모호성이 가중되고 있는 상황에서 기업들은 인공지능(AI) 기술과 자율 및 반자율 기술을 활용하여 새로운 차원의 안전성과 지속가능성, 수익성을 달성하는 방법을 모색하고 있습니다. 이는 셀프 옵티마이징 플랜트(Self-Optimizing Plant)를 향한 여정의 시작을 의미합니다.
エフピコ:デジタルサプライチェーンを 活用して排出と廃棄物を削減し、 持続可能性目標を達成
エフピコは、日本最大の食品容器メーカーであると同時に、流通サービスプロバイダーとして食品流通関連の店舗(スーパーマーケットなど)に各種製品を納入しています。また、使用済み食品容器やペット ボトルのリサイクルを行う環境先進企業でもあります。
自己最適化プラント: インダストリアルAIが支える、新時代の自律性
現在のVUCA環境において、新たなレベルの安全性、持続可能性、および収益性を実現する自律/半自律プロセスの開発のために、デジタライゼーションやAIに目を向ける企業が増えています。自己最適化プラントへのジャーニーはそこから始まります。自己最適化プラントがどのようにして以下のことを可能にするのか、是非このエグゼクティブブリーフでご覧ください。
GlaxoSmithKline Speeds up Batch Release Time: A Study in Digital Transformation
GlaxoSmithKline (GSK) wanted to review the structure of its batch production record and associated workflows as part of a continuous improvement process. Reducing batch review time usually results in faster batch cycle time, meaning higher throughput at the production facility and faster cash-to-cash cycle time. AspenTech was selected for this process due to integration with other solutions, such as Aspen InfoPlus.21® and GSK’s existing plant automation software (DCS). The pilot project was a resounding success, reducing order preparation time by 95% and record review time by over 50%.
Tecnologías operativas de última generación:Facilitar la empresa inteligente en un mundo cambiante
A medida que las organizaciones en todo el mundo buscan la manera de prosperar en medio de condiciones de mercado volátiles, inciertas, complejas y ambiguas (VUCA por sus siglas en inglés), muchas recurren a las tecnologías de la Industria 4.0 y a las nuevas capacidades de IA para obtener una ventaja competitiva. Descargue este documento para aprender cómo los líderes del mañana crearán no solo la empresa digital, sino una empresa del futuro que sea verdaderamente inteligente, y de igual forma podrán alcanzar la excelencia operativa que será sostenible independientemente de las condiciones del mercado.
Global Energy Company Improves Safety and Asset Integrity with Machine Learning
In this case study learn how a global oil and gas company was able to detect and predict a variety of pending equipment failures. Download today to uncover how Aspen Mtell enabled the company to correctly identify all reported events – as well as unknown problems.
Global Refinery Deploys Cost Estimation Solution to Accelerate Decision Making and Lower Costs
Phillips66 improves estimating productivity by 85% and reduces estimating variability to +/-15% with a five year before and after analysis of estimates vs. completed projects. Download the case study to learn more.
Tuesday, January 28, 2025
Tuesday, February 11, 2025
Monday, April 14, 2025